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NONLINEAR INTERFEROMETRY

Measure in circles
Entanglement can provide an extra boost in precision, but entangled states are hard to detect. A recent experiment 
solves this problem by letting the entangling dynamics come full circle — or not, depending on the subtle 
perturbation to be sensed.

Philipp Kunkel and Monika Schleier-Smith

The sensitivity of devices such as 
atomic clocks, magnetometers and 
gravimeters is limited by statistical 

fluctuations inherent in the probabilistic 
nature of quantum measurements. The 
fluctuations can be reduced by first allowing 

the constituent atoms to interact and thereby 
acquire quantum correlations. Typically, 
longer interaction times lead to stronger 
entanglement and thus, in principle, to 
higher sensitivity. This makes entanglement 
a critical resource for advancing precision 

measurements, but the most highly 
entangled states are often the most difficult 
to detect. Now, writing in Nature Physics, 
Qi Liu and colleagues report that they have 
solved this problem through a clever design 
of interactions that give rise to a cyclic time 
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Fig. 1 | Linear and SU(1,1) interferometry. a, In a linear optical interferometer (top), an incoming beam (black line) is split into a superposition of two paths via 
a beamsplitter. A relative phase change between the two paths leads to a measurable imbalance after the second beamsplitter. The atomic analogue consists 
of an ensemble of uncorrelated atoms, each initialized in an equal superposition of two states with N1 and N2 atoms (second row). The states are chosen such 
that the field to be measured perturbs their energy difference, which translates into a phase difference Δϕ after probing it for a certain time. To observe this 
signal, one applies a resonant radiation pulse that converts the acquired phase into a population difference between the two atomic states. For independent 
particles the precision of this phase measurement is limited by the width of the resulting binomial distribution (bottom). b, In an SU(1,1) interferometer, 
entanglement between the two arms is generated by a nonlinear crystal that is driven by a pump laser to produce correlated photon pairs. Disentanglement is 
achieved by a second nonlinear crystal driven by the same pump field with a specified phase shift. If the number of photons in the two arms is small compared 
with the pump field, all correlated photon pairs are reconverted into the pump mode if the phase shift is precisely π, whereas small perturbations in the phase 
lead to large changes in the side mode intensities. c, In Liu et al.1, the atomic analogue of the SU(1,1) interferometer is realized within the spin-1 ground state 
featuring three magnetic sublevels: state mF = 0 and states mF = ±1. After initializing all atoms in the mF = 0 mode, collisional interactions convert pairs of 
mF = 0 atoms into correlated atom pairs in states mF = ±1; the number of atoms in each state is denoted by N–1, N0 and N+1. d, The dynamics are similar to an 
inverted quantum pendulum. Here, quantum fluctuations in the orientation and angular momentum of the initial state lead to a superposition of clockwise and 
anticlockwise motion. After a full oscillation period, the unperturbed pendulum returns to its initial state (blue), while small perturbations lead to deviations 
of the final orientation (red). e, The atomic dynamics are represented on a sphere, spanned by the population in N0 and the transversal spin and quadrupole 
moment S⊥ and Q⊥, respectively. The initial quantum state is represented as a two-dimensional Gaussian distribution around the pole and subsequently 
spreads along the classical mean-field trajectories (black lines). Even a perturbation small compared with the initial quantum fluctuations, if applied halfway 
through the entangling evolution in the atomic gas, can be amplified into a large and readily detectable deviation in the final state.
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evolution — the same interactions that 
initially entangle the atoms ultimately also 
disentangle them1.

The measurement imprecision of a 
typical atomic sensor (Fig. 1a), consisting of 
an ensemble of uncorrelated atoms, scales 
as the inverse of the square root of the total 
number of atoms 

(√

N
)

. This limit, set by 
the independent quantum projections of 
uncorrelated particles, is referred to as the 
standard quantum limit. This limit can be 
overcome by employing an ensemble of 
entangled particles. Entanglement allows 
the probability distribution of measurement 
outcomes to exhibit narrower features than 
possible for an uncorrelated state. Thus, any 
change of the distribution is easier to detect, 
enabling the measurement imprecision to 
be reduced towards an optimal scaling as 
the inverse of the total number of atoms, 
known as the Heisenberg limit. In practice, 
however, the uncertainty caused by the noise 
of the detectors becomes more dominant as 
the features in the probability distribution 
become narrower. In the case of highly 
entangled states, this detection noise not 
only degrades the achievable sensitivity but 
can entirely eliminate any advantage gained 
from using entanglement.

The challenge of detecting a highly 
entangled state can be circumvented by 
applying a disentangling operation before 
detection. Variations of this principle have 
been demonstrated in contexts ranging from 
optical interferometry to spectroscopy with 
atoms and ions2–5. A canonical example 
in the case of optical interferometry is the 
so-called SU(1,1) interferometer6shown 
in Fig. 1b. Entanglement between the two 
interferometer arms is generated by a 
nonlinear crystal that is driven by a pump 
laser to produce correlated photon pairs 
in the two arms. Disentanglement is then 
achieved by a second nonlinear crystal 
driven by a pump field with the same 
intensity and the opposite phase.

Liu and colleagues realized an atomic 
analogue of the SU(1,1) interferometer using 
a Bose–Einstein condensate consisting of 
over 26,000 rubidium atoms (Fig. 1c). They 
prepared the atoms in the spin-1 ground 
state, featuring three magnetic sublevels that 
play the roles of the pump mode and the 
two interferometer arms. After initializing 
all atoms in the pump mode, they utilized 
collisional interactions to convert pairs of 

atoms in the initial state into correlated 
atom pairs in the states mimicking 
the interferometer arms. To achieve a 
Heisenberg scaling in phase sensitivity, a 
macroscopic fraction of the atoms needs 
to be converted into entangled pairs. As a 
result, the population of the pump mode 
is significantly depleted, which generically 
should lead to a failure of the disentangling 
operation. The solution to this problem 
is simply to wait — under the continued 
influence of collisional interactions — for 
the system to disentangle itself.

But why does the interacting atomic 
system ultimately return to its initial 
unentangled state? It turns out that, in 
the classical limit, the dynamics of the 
spin-1 Bose–Einstein condensate are 
similar to an inverted pendulum7,8. In the 
quantum mechanical description, quantum 
fluctuations in the orientation and angular 
momentum of the initial state lead the 
pendulum to fall into a superposition of 
clockwise and anticlockwise motion as 
illustrated in Fig. 1d. Irrespective of the 
direction of motion, the pendulum ideally 
returns to its initial position after a certain 
time. If, however, the quantum pendulum 
is slightly perturbed by an external field 
halfway through this evolution, then the 
final state may deviate dramatically from the 
initial state (Fig. 1e).

The use of cyclic dynamics in nonlinear 
interferometry offers a significant advantage 
over the original concept of SU(1,1) 
interferometry. In the earlier demonstration 
of an atomic SU(1,1) interferometer that 
the work of Liu and colleagues builds 
on, only 1% of the total number of atoms 
were converted into correlated atom 
pairs4. In contrast, in the present work, 
the full ensemble of atoms is used for 
entanglement-enhanced interferometry. 
So far, the metrological gain has been 
limited by experimental imperfections, 
including atom loss. Nevertheless, the 
nonlinear interferometer achieved a 
factor of three in metrological gain due to 
entanglement, meaning that three times 
as many unentangled atoms would be 
required to reach the same sensitivity. The 
demonstration of enhanced sensitivity via 
cyclic dynamics is so far a proof of principle, 
and has yet to be applied to a practical 
sensing application. An enhanced precision 
in magnetometry, for example, could be 

employed in applications of ultracold atomic 
gases to magnetic imaging of materials9.

This method adds to a growing arsenal 
of protocols for entanglement-enhanced 
spectroscopy that harness interactions not 
only to generate entangled resource states but 
also to facilitate their detection2,10. A notable 
alternative to the use of cyclic dynamics is to 
implement the disentangling operation by 
reversing the sign of interactions, allowing 
the system to effectively evolve backwards 
in time towards its initial unentangled 
state5,11. One such protocol was recently 
applied to achieve a Heisenberg scaling in 
phase sensitivity12. Yet in many physical 
systems, reversing the sign of interactions is 
not possible, which makes the use of cyclic 
dynamics a potentially powerful alternative. 
This first demonstration leverages the 
symmetry of global interactions in a 
Bose–Einstein condensate to access cyclic 
dynamics. Recent discoveries of periodicity 
in the dynamics of more complex interacting 
many-body systems13,14 open the door to 
generalizing the approach to a wider range of 
physical platforms. ❐
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